
Applied ML Journal Club:
Reinforcement Learning
26 August 2020
Anas Abou Allaban
allaban.me

https://www.allaban.me

I have a joke about
Reinforcement Learning...

...it will start sounding funny
after the first 10,000 times you
go over it.

The Domains of Machine Learning

The Domains of Machine Learning

Classification:
-Image Recognition
(YOLO, ImageNet)
-Speech Recognition
(DeepSpeech,
RNN-T)

Regression:
-Stock Market
Prediction
-User Behavior
-Event Prediction
(XGBoost, FF NN)

The Domains of Machine Learning

Classification:
-Image Recognition
(YOLO, ImageNet)
-Speech Recognition
(DeepSpeech,
RNN-T)

Regression:
-Stock Market
Prediction
-User Behavior
-Event Prediction
(XGBoost, FF NN)

Clustering:
-Customer Segments
-Dimensionality
Reduction
(GPT, GAN)

Anomaly Detection

The Domains of Machine Learning

Labeled Data
Unlabeled Data

? Data

The Domains of Machine Learning

Labeled Data
Unlabeled Data

No Data Collection!

Reinforcement Learning
models learn by exploring their
environment on their own!

Components of an RL System

1. State
The current environment at time t

2. Action
The action an agent executes
(ex. Move left)

3. Reward
Positive (or negative) feedback for action
taken

Remind you of something?

Reward (R)

The reward signal defines the goal of the RL problem (ex. Pick up the cup)

A reward signal is sent from the environment at every action that a RL agent takes (referred to as time

step).

The RL agent can influence the reward signal directly through its actions and indirectly through altering

the environment’s state. But it can’t change the problem it’s been tasked with.

State (s)

State is how we perceive the environment.

Like images and molecules, we need a way to encode

state such that the agent can learn and understand.

The simplest form of state is a 2x2 grid.

States are usually represented as images.

States have value (i.e. I’m in a good situation now!)

2x2 grid state

Image state

Actions (a)

Domain specific representations of what an agent can perform.

Actions are selected based on a policy (Usually denoted with P or ᴨ.)

A policy defines the behaviour of an agent and how the agent picks its actions.

It does so by mapping from perceived states of an environment to actions to be taken when in those

states.

“If we start at state s and take action a we end up in state with probability”

Formalizing the RL Problem

RL is usually formalized as a “Markov Decision Process” (MDP)

Formalizing the RL Problem

Formalizing the RL Problem

If I have a reward…

...and I know what reward to expect in certain states....

...what’s the policy that maximizes my expected reward?

We can solve for the optimal policy using

the Bellman Equations and Dynamic programming.

There’s nothing “deep” here though….

Formalizing the Deep RL Problem

Deep RL aims to learn the policy

 “Optimize the parameters either directly by gradient ascent on the performance

objective, or indirectly, by maximizing local approximations of the performance objective”

“The corresponding policy is obtained via the connection between Q* and ᴨ*: the actions taken by the
Q-learning agent are given by:”

How much data…?

Agents learn on their own by exploring the environment.

Randomly selecting actions however is extremely inefficient. Choosing a good reward function is also hard.

Achieving optimal policies with random sampling can take 100s of (simulation) years!

Improving sample efficiency and reward engineering (Inverse RL) is an active research area*

Some approaches: Model Predictive Control, Hierarchical RL, and Few Shot Learning

How much data...?

Dactyl

Learn how to move an object into a

specific pose or configuration.

Two step process:

1. Train in simulation

2. Fine tune on the real world

Dactyl: State

The state is the “pose” of the object.

State estimation from vision and motion capture

using CNNs.

Used to predict the next state given current

object pose

Dactyl: State

Dactyl: Action

Control Policy is an LSTM with an

additional hidden layer with ReLU.

Why LSTM?

Learn to generalize dynamics of the world

from multiple observations.

Dactyl: Action

Dactyl: Action

Policy uses memory to adapt to

current environment.

Better performance than simple

Feed-forward NN.

Dactyl: Reward

Use Proximal Policy Optimization (PPO) to boost exploration*

TL;DR -

1. Collect a small batch of experiences interacting with the environment.

2. Use that batch to update decision-making policy.

3. Once the policy is updated with this batch, the experiences are thrown away and a newer batch is

collected with the newly updated policy.

Learning Progress

Emergent behaviors

Engineering

384 worker machines, each with 16 CPU cores

Optimization performed on a single machine with

8 V100 GPUs

Generates ~2 years of simulated experience per hour

“Workers download the newest policy parameters from the

optimizer at the beginning of every epoch, generate training

episodes, and send the generated episodes back to the

optimizer.”

I have a joke about
reinforcement learning...

...but I won't get a reward for
telling it.

Open Questions

1. How to generalize to other tasks? (Meta-learning, Few shot learning, Evolutionary strategies?)

2. Why do we hit a limit of 50 consecutive tasks? (Does LSTM really have long term memory?)
a. Did it overfit?

3. What model of the world did the agent actually learn?

(What happens if we add grease or peanut butter to the cube? :))

Excited? Get started! https://spinningup.openai.com/en/latest/

Questions?
Shameless Plug: Checkout Tarteel!

https://www.download.tarteel.io

http://download.tarteel.io
https://www.download.tarteel.io

Resources

https://joshgreaves.com/reinforcement-learning/introduction-to-reinforcement-learning/

https://bitsandatoms.co/primer-reinforcement-learning/

https://openai.com/blog/learning-dexterity/

https://joshgreaves.com/reinforcement-learning/introduction-to-reinforcement-learning/
https://bitsandatoms.co/primer-reinforcement-learning/
https://openai.com/blog/learning-dexterity/

